乔爱科 博士生导师
联系电话:13521388049
E-mail:qak@bjut.edu.cn
通讯地址:北京市朝阳区平乐园100号
教育背景
1985.8~1989.7 华北电力学院机械系,本科生,专业:机械制造工艺
1989.8~1992.3 威尼斯wns.8885556基础部,研究生,专业:机械设计
1996.8~2000.6 威尼斯wns.8885556数理学院,博士生,专业:流体力学
工作经历
1992.4~1999.6 威尼斯wns.8885556基础部
1999.7~2007.2 威尼斯wns.8885556机电学院
2007.3~ 威尼斯wns.8885556生命科学与生物工程学院
2002.6~2004.5 汕头大学,在职博士后
2003.9~2005.2 日本北陆先端科学技术大学院大学,访问学者
研究方向
心脑血管疾病的生物力学建模仿真和植/介入医疗器械研发。
课程教学
生物力学基础、生物力学
奖项荣誉
(1) 1999年12月,国家机械局科技进步奖三等奖(第4成员, 获奖项目“矿用自卸汽车CAD系统”,9917816)。
(2) 2004年12月,北京市科学技术奖二等奖(第2成员,获奖项目“生物力学对器官和组织研究”,2004基-2-006)。
主要科研项目
(1) 可降解锌合金支架降解与血管重建的耦合效应建模分析研究,北京市教委-市自然科学基金联合项目(KZ202110005004),2021.1-2023.12,项目负责人
(2) Endovascular stent and vessel remodeling. Collaborative Research Project, Institute of Fluid Science, Tohoku University (J20R001). 2020.4-2021.3,项目负责人
(3) Mechanical Analysis of a Patented Biodegradable Zinc Alloy Stent Based on a Degradation Model. Collaborative Research Project, Institute of Fluid Science, Tohoku University (J19I010). 2019.4-2020.3,项目负责人
(4) 冠脉狭窄与心肌缺血定量关系的生物力学研究,国家自然科学基金重点项目(11832003),2019.1-2023.12,主要成员
(5) 基于超声和CT影像的冠脉血流储备分数无创计算方法研究,国家自然科学基金(11772015),2018.1-2021.12,项目负责人
(6) 可降解锌合金支架的支撑性能及结构优化研究,北京市教委科技计划重点项目暨北京市自然科学基金B类项目(KZ201710005007), 2017.1.1-2019.12.31,项目负责人
(7) The sensitity analysis and multi-objective optimization of the biodegradable zinc alloy stent. Collaborative Research Project, Institute of Fluid Science, Tohoku University (J17I105). 2017.4-2018.3,项目负责人
(8) 大动脉调转术改进几何构型对主动脉瓣关闭不全影响的生物力学机理和手术规划研究,国家自然科学基金(11472023),2015.1-2018.12,项目负责人
(9) 椎动脉支架再狭窄的血流动力学仿真和实验研究,国家自然科学基金(81171107),2012.1-2015.12,项目负责人
(10) 颅内动脉瘤新型裸支架的血流动力学研究,国家自然科学基金(10972016),2010.1-2012.12,项目负责人
(11) 旁路搭桥转流术治疗DeBakey III型主动脉夹层的数值模拟研究,国家自然科学基金(10772010),2008.1-2010.12,项目负责人
(12) 动脉瘤支架流阻的计算和实验研究,北京市自然科学基金(3092004),2009.1-2011.12 ,项目负责人
(13) 动脉瘤支架治疗新技术的血流动力学研究,北京市自然科学基金(3062003),2006.1-2008.12,项目负责人
主要论文论著
(1) 张晗冰,张愉,陈诗亮,崔新阳,彭坤,乔爱科(*)。支架降解与血管重建耦合作用的生物力学建模分析研究综述。生物医学工程学杂志,2020; 37(6): 956-965
(2) Peng K, Qiao A(*), Wang J, Ohta M, Cui X, Mu. Y. A novel structure design of biodegradable zinc alloy stent and its effects on reshaping stenotic vessel. Journal of Mechanics in Medicine and Biology. 2020, 20(6): 2050022.
(3) Cheng Y, Qiao A, Yang Y and Fan X. Numerical simulation of hemodynamics in two models for total anomalous pulmonary venous connection surgery. Front Physiol 2020;11:206.
(4) Fu Y, Qiao A, Yang Y and Fan X. Numerical simulation of the effect of pulmonary vascular resistance on the hemodynamics of reoperation after failure of one and a half ventricle repair. Front Physiol 2020;11:207.
(5) Yang Y, Wang J, Qiao A, Fan X. Numerical simulation of the influence of geometric configurations on pressure difference in the intraventricular tunnel. Front Physiol 2020,11:133.
(6) 张宏辉,乔爱科(*)。基于冠状动脉形状阻力的血流储备分数数值模拟。医用生物力学。2020;35(5): 430-435
(7) Wang D, Zhang X, Zu G., Qiao A, He Y, Mu Y. Compressive properties of biomedical open-cell Zn foam. Materials Research Express, 2019; 6(11), 115406. doi:10.1088/2053-1591/ab4388
(8) Li G, Watanabe K, Anzai H, Song X, Qiao A, Ohta M. Pulse-Wave-Pattern Classification with a Convolutional Neural Network. Sci Rep. 2019 Oct 17;9(1):14930. doi: 10.1038/s41598-019-51334-2.
(9) Cui X, Ren Q, Li G, Li Z, Qiao A (*). Influence of the Realistic Artery Geometry Parameters on a Coronary Stent Fatigue Life. International Journal of Computational Methods, 2019; 16(3):1842006~1-12.
(10) Fu W, Qiao A (*). Pressure Increase after Stent Intervention Treatment for an Aneurysm Accompanied by a Stenosis. International Journal of Computational Methods, 2019;16(3):1842010~1-12.
(11) Song X, Li G, Qiao A (*), Jin Z, Chen Z, You L. Association of Simultaneously Measured Limbs Blood Pressure Differences with Ankle-Brachial Index. International Journal of Computational Methods, 2019,16(3): 1842016-1~10.
(12) Peng K, Cui X, Qiao A (*), Mu Y. Mechanical analysis of a novel biodegradable zinc alloy stent based on a degradation model. Biomed Eng Online. 2019;18(1):39(1-14).
(13) 李慧,潘友联,乔爱科(*),刘迎龙,董念国。瓣膜高度对移植主动脉瓣开闭性能的影响。生物医学工程学杂志。2019;36(2):199-205
(14) 彭坤,乔爱科(*)。新型可降解锌合金支架的结构设计及其力学性能分析。医用生物力学,2019,34(2):160-165
(15) Fu W, Xia Q, Yan R, Qiao A(*). Numerical Investigations of the Mechanical Properties of Braided Vascular Stents. Bio-Medical Materials and Engineering. 2018;29 (1): 81–94. DOI 10.3233/BME-171714
(16) 马跃,侯阳,李东玉,刘兴利,乔爱科,侯映映,王玉科,郭启勇。建立及评价适于血流储备分数CT成像模拟的小型猪慢性冠状动脉狭窄模型。中国医学影像技术。2018;34(2):166-170
(17) Qiao A(*), Song X, Peng K, Du G, Li G, Chen Z. Validity of CAVI measurements for diagnosing hypertension in middle-aged and elderly patients and correlations of these measurements with relevant factors. Technology and Health Care. 2017; 25 (S): S125–S134.
(18) 贾荣玺,马云菲,顾兆勇,潘友联,柳思聪,乔爱科(*),郭超,董念国,李晓锋,刘迎龙。窦管交界锥度对生物瓣影响的脉动流实验研究。生物医学工程学杂志。2017; 34(3):365-370
(19) Fu W, Cheng G, Yan R, Qiao A(*). Numerical Investigations of the Flexibility of Intravascular Braided Stent. Journal of Mechanics in Medicine & Biology, 2017; 17(4): 1750075.
(20) Han Y, Yang Q, Yang Z, Xia J, Su T, Jin L(*), Qiao A(*), Yu J. Computational fluid dynamics simulation of hemodynamic alterations in sigmoid sinus diverticulum and ipsilateral upstream sinus stenosis after stent implantation in patients with pulsatile tinnitus. World Neurosurg. 2017 Jul 8. pii: S1878-8750(17)31076-8.
(21) Li H, Wei Y, Wang X, Liu T, Gu J, Li Z, Wang M, Zhao D, Qiao A, Liu Y, Zhu B. Multi-objective Optimizations of Biodegradable Polymer Stent Structure and Stent Micro-injection Molding Process. Polymers. 2017, 9, 20
(22) Ma Y, Liu H, Hou Y, Qiao A, Hou Y, Yang Q, Guo Q. Instantaneous Wave-Free Ratio Derived from Coronary Computed Tomography Angiography in Evaluation of Ischemia-Causing Coronary Stenosis: Feasibility and Initial Clinical Research. Medicine. 2017;96(4):e5979.
(23) Li H, Liu T, Wang M, Zhao D, Qiao A, Wang X, Gu J, Li Z, Zhu B. Design optimization of stent and its dilatation balloon using kriging surrogate model. BioMedical Engineering Online, 2017; 16(1).
(24) Song X, Li G, Qiao A (*), Chen Z. Association of Simultaneously Measured Four-limb Blood Pressures with Cardiovascular Function: a Cross-sectional Study. BioMedical Engineering OnLine. 2016, 15(Suppl 2):147
(25) Gu Z, Pan Y, Qiao A (*), Hu X, Dong N, Li X, Liu Y, Shang D. Numerical simulation of closure performance for neo-aortic valve for arterial switch operation. BioMedical Engineering OnLine. 2016 , 15(Suppl 2):150
(26) Ren X, Qiao A(*), Song H, Song G, Jiao L. Influence of Bifurcation Angle on In-stent Restenosis at the Vertebral Artery Origin: A Simulation Study of Hemodynamics. J. Med. Biol. Eng. 2016; 36(4):555-562
(27) Ren X, Fu Y, Qiao A (*). Influence of bifurcation diameter and angle on the vertebral artery origin stenosis: a simulation study of hemodynamics. Journal of Mechanics in Medicine and Biology. 2016; 16(6): 1650079 (1-18).
(28) Qiao A(*), Dai X, Niu J and Jiao J. Hemodynamics in stented vertebral artery ostial stenosis based on computational fluid dynamics simulations. Computer Methods in Biomechanics and Biomedical Engineering. 2016; 19(11): 1190-1200.
(29) Berg P, Roloff C, ……, Qiao A, et al. The Computational Fluid Dynamics Rupture Challenge 2013–Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms. Journal of Biomechanical Engineering. 2015;137(12), 121008 (1-13) .
(30) Morsi Y, Hellevik L, Qiao A, Vayalappil M C, Tu J and Yang W. Cardiovascular haemodynamics: Advancement of numerical and experimental diagnostic tools. Advances in Mechanical Engineering.1-3, 2015. DOI: 10.1177/1687814015581243
(31) Lu J, Duan W, Qiao A(*). Finite element analysis of mechanics of neovessels with intraplaque hemorrhage in carotid atherosclerosis. BioMedical Engineering OnLine, 2015, 14:S3 (1-11).
(32) Fu Y, Qiao A(*), Jin L(*), The influence of hemodynamics on the ulceration plaques of carotid artery stenosis. J. Mech. Med. Biol. 2015;15(1): 1550008-1~14.
(33) Qiao A(*), Pan Y, Dong N. Fluid-Structure Interaction Simulation of Aortic Valve Closure with Various Sinotubular Junction and Sinus Diameters. Annuals of Biomedical Engineering. 2015; 43(6): 1363-1369.
(34) Cito S, Geers AJ, Arroyo MP, Palero VR, Pallarés J, Vernet A, Blasco J, Román L. San , Fu W , Qiao A, Janiga G, Miura Y, Ohta M, Mendina M, and Usera G. Accuracy and Reproducibility of Patient-Specific Hemodynamics Models of Stented Intracranial Aneurysms: Report on the Virtual Intracranial Stenting Challenge 2011. Annals of Biomedical Engineering. 2015; 43(1): 154-167
(35) Qiao A(*), Pan Y, Dong N. Modeling study of aortic root for Ross procedure: a structural finite element analysis. Journal of Heart Valve Disease. 2014;23(6):683-687
(36) Qiao A (*), Yin W, Chu B. Numerical simulation of fluid–structure interaction in bypassed DeBakey III aortic dissection. Computer Methods in Biomechanics and Biomedical Engineering. 2015; 18(11):1173-1180
(37) Qiao A(*), Han H, Ohta M, and Qian Y. Computational Simulations in the Cardiovascular System. The Scientific World Journal. Volume. 2014, http://dx.doi.org/10.1155/2014/421061
(38) Li Y, Anzai H, Nakayama T, Shimizu Y, Miura Y, Qiao A(*), Ohta M. Simulation of hemodynamics in artery with aneurysm and stenosis with different geometric configuration. Journal of Biomechanical Science and Engineering. 2014;9(1): 13-0123(1-11).
(39) Qiao A(*), Zhang Z. Numerical simulation of vertebral artery stenosis treated with different stents. J Biomech Eng. 2014; 136(4):041007-041007-9.
(40) Qiao A(*), Zeng K. Numerical simulation of hemodynamics in intracranial saccular aneurysm treated with a novel stent. Neurological Research, 2013; 35(7): 701-708.
(41) Niu J, Qiao A(*), Jiao L. Hemodynamic analysis of stent expansion ratio for the vertebral artery ostium stenosis intervention. Journal of Mechanics in Medicine and Biology. 2013;13(4):1350058~1-11.
(42) Steinman DA. (*), …, Qiao A, et al. Variability of CFD Solutions for Pressure and Flow in a Giant Aneurysm: The SBC2012 CFD Challenge. Journal of Biomechanical Engineering, 2013; 135(2): 021015, 1-13.
(43) Qiao A(*), Nan Q, Liu Y, Chang Y. Can interventional ablation be applied to the treatment of arterial aneurysm? Med Hypotheses, 2013;80 (4):373-375.
(44) Fu W, Gu Z, Meng X, Chu B, Qiao A(*).Numerical simulation of hemodynamics in stented internal carotid aneurysm based on patient-specific model. Journal of Biomechanics. 2010;43(7):1337-1342
(45) Sui Y, Ma B, Chu B, Qiao A(*). Optimization of Anastomotic Configuration in CABG Surgery. Commun Numer Meth Engng. 2009; 25(11):1097-1106.
(46) Qiao A, Liu Y. Medical application oriented blood flow simulation. Clinical Biomechanics, 2008; 23(SUPLL.1): S130-S136
(47) Qiao A, Liu Y. Numerical study of hemodynamics comparison between small and large femoral bypass grafts. Commun Numer Meth Engng. 2008; 24(11):1067-1078.
(48) Qiao A, Matsuzawa T. Hemodynamic simulation in a novel design for femoral bypass grafts. Biorheology. 2007;44(2):103-124
(49) Qiao A, Liu Y, Guo Z. Wall shear stresses in small and large 2-way bypass grafts. Medical Engineering & Physics, 2006; 28(3): 251-258
(50) Qiao A, Liu Y. Influence of graft-host diameter ratio on the hemodynamics of CABG. Bio-medical Materials and Engineering. 2006; 16(3): 189-201
(51) Qiao A, Liu Y, Li S, Zhao H. Numerical simulation of physiological blood flow in 2-way coronary artery bypass grafts. Journal of Biological Physics, 2005; 31(2): 161-182
(52) Qiao AK, Guo XL, Wu SG, Zeng YJ, Xu XH. Numerical study of nonlinear pulsatile flow in S-shaped curved arteries. Medical Engineering & Physics, 2004; 26: 545-552
(53) Qiao AK, Zeng YJ, Xu XH. Numerical simulations of stenosed femoral artery with symmetric 2-way bypass graft. Bio-Medical Materials and Engineering, 2004; 14(2), 167-174
(54) 乔爱科主编,《机械CAD软件开发实用技术教程》,机械工业出版社,2008年7月出版。
(55) 刘莹、吴宗泽主编,乔爱科参编。《机械设计教程》,机械工业出版社,2008年7月第二版。国家教育部普通高等教育“十一五”国家级规划教材。
(56) 万小利、高志主编,乔爱科参编。《计算机辅助机械设计》,机械工业出版社,2003年3月出版。
(57) Gao F, Qiao A, Matsuzawa T. Numerical Simulation in Aortic Arch Aneurysm. In “Etiology, Pathogenesis and Pathophysiology of Aortic Aneurysms and Aneurysm Rupture”, ed. REI:nhart Grundmann. ISBN 978-953-307-523-5, Publisher: InTech. Publication date: July 2011. pp207-222
(58) 乔爱科参编, 中国学科发展战略:流体动力学。第二十二章,生物医学工程中的流体力学。pp501-520。科学出版社,2014.8
(59) 乔爱科参编, 生物力学研究前沿系列:生物力学建模仿真与应用。上海交通大学出版社,2017.12 9787313184986/Q
主要专利
(1) 乔爱科,吴萍。基于脉搏波的血液粘度无创检测方法,发明专利,201210370371.X
(2) 乔爱科,顾兆勇,贯建春,孟宪龙,张宏斌。一种血管内裸支架,发明专利,200810106140.1
(3) 乔爱科,潘友联。用于主动脉瓣叶游离缘悬浮手术的瓣叶成形器械,发明专利,201310503656.0
(4) 乔爱科,刘有军,任庆帅。沿真实牙弓轨迹扫描的数字化牙科曲面断层全景X光机,发明专利, 20140109951.2
(5) 乔爱科,潘友联。一种充液型笼球式主动脉瓣支架系统,发明专利,201310632394.8
(6) 乔爱科,卢金秋。一种不均匀厚度的双刀片切割球囊,发明专利,201410117540.8
(7) 乔爱科,潘友联。一种聚合物人工主动脉瓣膜,发明专利,201410146856.X
(8) 乔爱科,王俊杰,葛长森。一种放射性粒子介入治疗肿瘤的手术机器人系统及操作方法,发明专利,ZL 201510900372.4
(9) 乔爱科,崔新阳,任庆帅。一种用于放射性粒子支架内装配的装置及装配方法,发明专利,ZL 201510762977.1
(10) 乔爱科,崔新阳,彭坤,任庆帅。带环向支撑条的血管支架,发明专利,ZL201610133245.0
(11) 穆永亮,祖国胤,史建超,乔爱科。一种生物医用可降解锌合金内植入材料及其板材制备方法, 发明专利, ZL201610487654.0
(12) 乔爱科,彭坤,夏俊,崔新阳,李靖,李子豪。榫卯结构支撑筋血管支架。发明专利,ZL201710402928.6
(13) 乔爱科,王斯睿,吴丹丹,王俊杰,彭坤,夏俊,程业阳,李晓。一种低轴向伸长率可降解支架结构。发明专利,ZL201811204035.1
(14) 乔爱科,彭坤,王俊杰,王斯睿,夏俊,程业阳,付言,侯倩文。可均匀扩张的高支撑刚度可降解支架结构设计。发明专利,ZL201711491848.9
主要软件著作权
(1) 生物芯片电极印刷质量检测系统V1.0,2008SRBJ0892
(2) 血流动力学有限元后处理软件,2008SRBJ1425
(3) ANSYS结果后处理软件。2010SRBJ2324
(4) 人体脉搏波信号和血压数值采集的实时监测系统的软件。2014SR116216
(5) 人体四肢血压脉搏的实时监测系统。2015SR089203
(6) 椎动脉支架内再狭窄预测分析软件。2018SR87826
主要社会兼职
中国生物医学工程学会生物力学分会委员;中国生物材料学会材料生物力学专业委员会委员;北京生物医学工程学会生物力学专业委员会委员;亚太基层卫生协会超声医学分会人工智能专委会副主任委员;中国生物医学工程学会生物力学分会高级会员;中国生物物理学会生物力学和生物流变学专业委员会高级会员;美国机械工程师学会(ASME)会员;美国生物医学工程学会(BMES)会员;世界华人生物医学工程协会(WACBE)会员。《北京生物医学工程》副主编,《医用生物力学》、《威尼斯wns.8885556学报》、《生物物理学》、《Medicine in Novel Technology and Devices》、《Archives of Clinical Hypertension》等国内外学术期刊编委。近百份国际、国内学术期刊的审稿人。国家科技部重大研发计划、国家自然科学基金等项目评审专家。