威尼斯wns·8885556(SViP认证网站)-BinG百科

English |  搜索
师资队伍

高景峰

点击数:

      高景峰,博士,教授(博导、硕导)

        联系电话:13651234794

         E-mail:gao.jingfeng@bjut.edu.cn

        通讯地址:北京市朝阳区平乐园100号威尼斯wns.8885556西院水环境楼









教育背景

1998.9-2001.7,哈尔滨工业大学,市政工程专业,博士,导师:彭永臻 教授

博士论文:SBR法去除有机物、脱氮除磷在线模糊控制的基础研究

1996.9-1998.7,哈尔滨建筑大学,水力学与河流水体动力学,硕士,导师张维佳教授

1992.9-1996.7,哈尔滨建筑大学,给水排水专业,本科

工作经历

2012.7.12-至今,博士生导师

2010.12.18-至今,威尼斯wns.8885556环境与能源工程学院,教授

2004.1-2010.12.17,威尼斯wns.8885556环境与能源工程学院,副教授

2005.8-2005.11,加拿大UBC和SFU大学,培训与交流

2001.7-2003.12,威尼斯wns.8885556环境与能源工程学院,讲师

研究方向

污水脱氮除磷技术、环境微生物分子生态学、新兴污染物控制技术、好氧颗粒化技术(与北排合作完成150吨/天高碑店中试、1000吨/天方庄中试、8万吨/天吴家村再生水厂应用)

课程教学

(1)讲授过《水污染控制工程》、《水质工程学1》(双语)、《水质工程学2》、《环境工程学基础(水)》、《环境监测课程实验》、《环境监测综合实验》、《水质工程学 实验技术1》、《水质工程学实验技术2》、《污染控制工程实验》、《排水管网工程课程设计》等10门本科生课程;

(2)1门研究生课程:《废水厌氧生物处理理论与技术》。

(3)每年指导2名左右本科毕业论文。

(4)2004年,《水质工程学1》威尼斯wns.8885556第三批双语教学立项,讲授至今。

(5)主持完成威尼斯wns.8885556教育教学研究重点项目《城市污水处理视频教学系统的研究》,共摄制了16个污水处理厂的视频教学系统。

(6)按照时间顺序已经培养毕业的硕士(郭建秋(2008年毕业)、陈冉妮、苏凯、张倩、王金惠、罗欣、吴桂霞、李婷、李洪禹、孙丽欣、司春英、张丽芳、王时杰、刘香会、邬志龙、贾京鑫、张达、张文治、王雨薇(国家奖学金)、赵轶凡(国家奖学金)、单家林、武泽杰(2022年毕业、国家奖学金)、李籽桥(2022年毕业、国家奖学金)、郭怡(2022年毕业)。

(7)张倩、王金惠获威尼斯wns.8885556“科技之星(1/10)”;陈冉妮、苏凯、张倩、王金惠、罗欣、李洪禹、司春英、刘香会、邬志龙、贾京鑫、张达、张文治、王雨薇、赵轶凡、武泽杰、李籽桥、郭怡获得获威尼斯wns.8885556优秀硕士学位论文

(8)毕业的博士:樊晓燕(2017)、潘凯玲(2019,校优博、国家奖学金)、李定昌(2020)、段婉君(2021)、戴慧卉(2022,校优博、国家奖学金)

(9)毕业的工程硕士:丁红、张志众、黄丽荣、孙冀垆、李婷、刘源、庞晓辰、丁彦、何瑜、崔艳梅、李芳、朱春辉

(10)培养的3名本科生(毕环宇、和阳、冯放晴)获校优秀毕业论文;1人获北京市优秀毕业生(和阳)

(11)指导2名本科生(冯放晴、杨辰)获2009年、2010年国家大学生创新性实验计划项目。

(12)指导5名本科生(和阳、袁泉、杨辰、郑晓桥、张志红)主持威尼斯wns.8885556星火计划。

奖项荣誉

(1)2021年11月,入选全球顶尖前10万名科学家(威尼斯wns.8885556微信公众号报道)

(2)2021年12月16日,在威尼斯wns.8885556研究生教育工作中取得卓著成绩,获得“高层次创新人才培养优秀指导教师”;荣誉称号。

(3)北京市科技新星(2006A10);

(4)威尼斯wns.8885556“京华人才”;

(5)作为主讲教师(第2),《污水处理新理论与新技术》,2012年获国家精品视频公开课;

(6)作为主讲教师,《水质工程学》北京市精品课程,国家级精品课程、国家精品资源共享课;

(7)作为骨干成员,2007年,“水污染控制工程教学团队”被评为国家级教学团队;

(8)作为骨干,“水污染控制与水资源可持续利用团队”获2005年北京市属市管高等学校人才强教计划学术创新团队称号;

(9)作为主要完成人(第5),2012年《构建“名师、名专业、名课程、名教材”平台,可持续培养环境工程创新人才》获北京市高等教育教学成果奖(一等奖)。

主要科研项目

主持的科研项目

(1)国家自然科学基金面上项目(52170016,2022.1-2025.12):典型季铵盐化合物在生物脱氮过程中的归趋及其对抗性基因传播机制的影响;

(2)北京市自然科学基金面上项目(8202006,2020.1-2022.12):利用新型抑制剂实现城市污水短程硝化的快速启动和稳定维持;

(3)国家科技重大专项(子任务)(2017ZX07103-003,2017.01-2020.12):基于生物膜的城市污水深度脱氮除磷工艺研究;

(4)北京市科技计划项目(Z181100005518002,2018.01-2021.06):城市污水好氧高密度微生物颗粒技术应用研究;

(5)国家自然科学基金面上项目(51578015,2016.1-2019.12):活性污泥中AOA、AOB和异养菌在三氯生去除过程中的协同作用机理;

(6)国家自然科学基金面上项目(51378027,2014.1-2017.12):基于DNA-SIP技术的污水氨氧化微生物系统发育与生理代谢功能关系的研究;

(7)国家自然科学基金面上项目(51078007,2011.1-2013.12):不同污水脱氮工艺中AOA和AOB的种群数量和组成特征;

(8)国家自然科学基金青年基金项目(50508001,2006.1-2008.12):间歇式好氧颗粒污泥反应器的快速启动和稳定维持;

(9)北京市自然科学基金面上项目(8162010,2016.1-2018.12):污水处理系统中氨氧化古菌的富集培养及其生理代谢特性;

(10北京市自然科学基金面上项目(8112007,2011.1-2013.12):污水氨氧化过程中古菌与细菌相对贡献的研究;

(11北京市自然科学基金面上项目(8082007,2008.1-2010.12):新型好氧往复连续流颗粒污泥反应器的基础研究;

(12威尼斯wns.8885556“京华人才”,2013.1-2015.12

(132011年度北京市属高等学校人才强教深化计划中青年骨干人才(PHR20110819,2011.1-2013.12):农业废弃物生物吸附去除水中染料的应用基础研究。

(14北京市教育委员会计划面上项目(KM200510005020,2005.1-2007.12):内循环颗粒污泥床硝化后实现反硝化除磷的基础研究;

(15北京市科技新星计划A类(2006A10,2006.9-2009.9)。

参加的科研项目

(1)国家自然科学基金项目(59778024,1998.1-2000.12):活性污泥法丝状菌污泥膨胀的控制与防止

(2)国家自然科学基金项目(59878016,1999.1-2001.12):SBR法的在线模糊控制系统

(3)国家自然科学基金重点项目(50138010,2002.1-2005.12):城市污水处理系统的智能控制理论、方法和技术

(4)"863计划"国家重大科技专项项目-"水污染控制技术与治理工程:城市污水SBR处理工艺的设备成套化研究(2004AA601020,2004.7-2007.12)

(5)国家自然科学基金---国际(地区)重大合作项目(2004.10-2007.9):污水脱氮除磷新理论、新工艺及过程控制

主要论文论著

译著:

(1)高景峰,彭永臻 译. 污水处理系统的建模、诊断和控制. 化学工业出版社,2005年1月(64.5万字)

编著

(1)环境科学大辞典(修订版),编委,7万字,负责水污染控制部分,中国环境科学出版社,2008年9月

(2)程皓,白雪,郝莉,高景峰,何丰平,黄中权. GB/T 26923-2011,《节水型企业 纺织染整行业》,中国标准出版社, 2011

SCI论文(Gao J-F和Gao JF均为高景峰缩写,*为通讯作者)

(1)Cui YC, Gao JF*, Wu ZJ, Wang ZQ, Zhao YF, Guo Y. Inhibition of Nitrospira and Nitrotoga by paracetamol achieved the rapid start-up and long-term stable operation of partial nitrification for low-strength ammonium wastewater. Chemical Engineering Journal 2023, 454: 140139.

(2)Li ZQ, Gao JF*, Zhao YF, Wang ZQ, Cui YC, Li DC, et al. Different acesulfame potassium fate and antibiotic resistance propagation pattern in nitrifying and denitrifying sludge systems. Science of The Total Environment 2023, 856: 159238.

(3)Liu Y, Gao JF*, Zhao MY, Fu XY, Zhang Y, Zhang HR. Removal of antibiotic resistant bacteria, genes and inhibition of plasmid-mediated horizontal transfer by peroxymonosulfate: Efficiency and mechanisms. Chemical Engineering Journal 2023, 453: 139728.

(4)Wang ZQ, Gao JF*, Dai HH, Yuan YK, Zhao YF, Li DC, et al. Partial S(0)-driven autotrophic denitrification process facilitated the quick natural enrichment of anammox bacteria at room temperature. Science of The Total Environment 2023, 855: 158916.

(5)Wang ZQ, Gao JF*, Zhao YF, Zhang Y, Yuan YK, Dai HH, et al. Deciphering the coupling of partial nitrification/anammox and sulfur autotrophic denitrification: Microbial metabolism and antibiotic resistance genes propagation. Chemical Engineering Journal 2023, 452: 139176.

(6)Zhao MY, Gao JF*, Liu Y, Wang ZQ, Wu ZJ, Zhang HR, et al. Short-term stress of quaternary ammonium compounds on intracellular and extracellular resistance genes in denitrification systems. Chemical Engineering Journal 2023, 452: 139166.

7Zhao MY, Gao JF*, Zhang HR, Cui YC, Wang ZQ, Zhao YF, et al. Quaternary ammonium compounds promoted anoxic sludge granulation and altered propagation risk of intracellular and extracellular antibiotic resistance genes. Journal of Hazardous Materials 2023, 445: 130464.

(8)Cui YC, Gao JF*, Guo Y, Li ZQ, Wang ZQ, Zhao YF. Unraveling the impact and mechanism of antipyretic paracetamol on intergenera conjugative plasmid transfer. Environmental Research 2022, 215: 114263.

(9)Dai HH, Gao JF*, Li DC, Wang ZQ, Cui YC, Zhao YF. Family Sphingomonadaceae as the key executor of triclosan degradation in both nitrification and denitrification systems. Chemical Engineering Journal 2022, 442: 136202.

(10Dai HH, Gao JF*, Li DC, Wang ZQ, Duan WJ. DNA-based stable isotope probing deciphered the active denitrifying bacteria and triclosan-degrading bacteria participating in granule-based partial denitrification process under triclosan pressure. Water Research 2022, 210: 118011.

(11Dai HH, Gao JF*, Li DC, Wang ZQ, Zhao YF, Cui YC. Polyvinyl chloride microplastics changed risks of antibiotic resistance genes propagation by enhancing the removal of triclosan in partial denitrification systems with different carbon source. Chemical Engineering Journal 2022, 429: 132465.

(12Guo Y, Gao JF*, Cui YC, Wang ZQ, Li ZQ, Duan WJ, et al. Chloroxylenol at environmental concentrations can promote conjugative transfer of antibiotic resistance genes by multiple mechanisms. Science of The Total Environment 2022, 816: 151599.

(13Guo Y, Gao JF*, Wang ZQ, Cui YC, Li ZQ, Wu ZJ, et al. The fate and behavior mechanism of antibiotic resistance genes and microbial communities in flocs, aerobic granular and biofilm sludge under chloroxylenol pressure. Journal of Hazardous Materials 2022, 438: 129465.

(14Li DC, Gao JF*, Dai HH, Wang ZQ, Cui YC, Zhao YF, et al. Triclosan enriched resistance genes more easily than copper in the presence of environmental tetracycline in aerobic granular sludge system. Science of The Total Environment 2022: 152871.

(15Li DC, Gao JF*, Dai HH, Wang ZQ, Cui YC, Zhao YF, et al. Fates of quaternary ammonium compound resistance genes and the corresponding resistant strain in partial nitrification/anammox system under pressure of hexadecyl trimethyl ammonium chloride. Water Research 2022, 217: 118395.

(16Li DC, Gao JF*, Dai HH, Wang ZQ, Zhao YF, Cui YC. Higher spreading risk of antibacterial biocide and heavy metal resistance genes than antibiotic resistance genes in aerobic granular sludge. Environmental Research 2022, 212: 113356.

(17Li ZQ, Gao JF*, Guo Y, Cui YC, Wang YW, Duan WJ, et al. Enhancement of antibiotic resistance dissemination by artificial sweetener acesulfame potassium: Insights from cell membrane, enzyme, energy supply and transcriptomics. Journal of Hazardous Materials 2022, 422: 126942.

(18Liu Y, Gao JF*, Wang YW, Duan WJ, Liu J, Zhang Y, et al. The removal of antibiotic resistant bacteria and genes and inhibition of the horizontal gene transfer by contrastive research on sulfidated nanoscale zerovalent iron activating peroxymonosulfate or peroxydisulfate. Journal of Hazardous Materials 2022, 423: 126866.

(19Liu Y, Gao JF*, Wang YW, Duan WJ, Zhang Y, Zhang HR, et al. Synergistic effect of sulfidated nanoscale zerovalent iron in donor and recipient bacterial inactivation and gene conjugative transfer inhibition. Journal of Hazardous Materials 2022, 432: 128722.

(20Wang ZQ, Gao JF*, Wang SJ, Zhao YF, Dai HH, Li DC, et al. Triclocarban shifted the microbial communities and promoted the spread of antibiotic resistance genes in nitrifying granular sludge system. Bioresource Technology 2022, 347: 126429.

(21Wang ZQ, Gao JF*, Zhao YF, Cui YC, Zhang Y, Dai HH, et al. Discrepant responses of polyvinyl chloride microplastics biofilms and activated sludge under sulfadiazine stress in an anaerobic/anoxic/oxic system. Chemical Engineering Journal 2022, 446: 137055.

(22Wu ZJ, Gao JF*, Cui YC, Li DC, Dai HH, Guo Y, et al. Metagenomics insights into the selective inhibition of NOB and comammox by phenacetin: Transcriptional activity, nitrogen metabolism and mechanistic understanding. Science of The Total Environment 2022, 803: 150068.

(23Wu ZJ, Gao JF*, Cui YC, Wang ZQ, Zhao YF, Zhang HR, et al. Feeding low-level benzethonium chloride can promote the start-up, fast recovery and long-term stable maintenance of partial nitrification for low-ammonium wastewater. Bioresource Technology 2022, 353: 127152.

(24Zhao YF, Gao JF*, Wang ZQ, Cui YC, Zhang Y, Dai HH, et al. Distinct bacterial communities and resistance genes enriched by triclocarban-contaminated polyethylene microplastics in antibiotics and heavy metals polluted sewage environment. Science of The Total Environment 2022, 839: 156330.

25Zhao YF, Gao JF*, Zhang WZ, Wang ZQ, Cui YC, Dai HH, et al. Robustness of the partial nitrification-anammox system exposing to triclosan wastewater: Stress relieved by extracellular polymeric substances and resistance genes. Environmental Research 2022, 206: 112606.

(26Cui YC, Gao JF*, Zhang D, Li DC, Dai HH, Wang ZQ, et al. Responses of performance, antibiotic resistance genes and bacterial communities of partial nitrification system to polyamide microplastics. Bioresource Technology 2021, 341: 125767.

(27Dai HH, Gao JF*, Li DC, Wang ZQ, Duan WJ. Metagenomics combined with DNA-based stable isotope probing provide comprehensive insights of active triclosan-degrading bacteria in wastewater treatment. Journal of Hazardous Materials 2021, 404: 124192.

(28Dai HH, Gao JF*, Shan JL, Lu XC, Li DC, Duan WJ, et al. Pressure of high level acetaminophen on fixed biofilm and aerobic granule-based systems: Insights on nitrification performances, microbial responses and acetaminophen’s bio-degradation pathways. Chemical Engineering Journal 2021, 426: 131907.

(29Duan WJ, Gao JF*, Li DC, Dai HH, Wang ZQ, Zhang WZ, et al. Unravelling the roles of Ginkgo biloba L. for modification of nanoscale zero valent iron in persulfate system to remove antibiotic resistance genes by the tool of metabonomic analysis. Chemical Engineering Journal 2021, 417: 128038.

(30Duan WJ, Gao JF*, Wu ZJ, Dai HH, Wang ZQ, Li DC, et al. Enhanced removal of antibiotic resistance genes by nanoscale iron-cobalt particles modified with Ginkgo biloba L. leaf: Combining Illumina MiSeq sequencing and oligotyping analysis. Bioresource Technology 2021, 321: 124453.

(31Li DC, Gao JF*, Dai HH, Duan WJ, Wang ZQ, Zhou ZX. Fates of intracellular and extracellular antibiotic resistance genes during a pilot-scale aerobic granular sludge cultivation process. Chemical Engineering Journal 2021, 421: 127737.

(32Wang ZQ, Gao JF*, Dai HH, Zhao YF, Li DC, Duan WJ, et al. Microplastics affect the ammonia oxidation performance of aerobic granular sludge and enrich the intracellular and extracellular antibiotic resistance genes. Journal of Hazardous Materials 2021, 409: 124981.

(33Wang ZQ, Gao JF*, Zhang D, Dai HH, Zhao YF, Li DC, et al. Achieving stable and long-term partial nitrification of domestic wastewater by side-stream sludge treatment using a novel nitrite oxidation inhibitor chloroxylenol. Bioresource Technology 2021, 342: 125999.

(34Wang ZQ, Gao JF*, Zhao YF, Dai HH, Jia JX, Zhang D. Plastisphere enrich antibiotic resistance genes and potential pathogenic bacteria in sewage with pharmaceuticals. Science of The Total Environment 2021, 768: 144663.

(35Zhao YF, Gao JF*, Wang ZQ, Dai HH, Wang YW. Responses of bacterial communities and resistance genes on microplastics to antibiotics and heavy metals in sewage environment. Journal of Hazardous Materials 2021, 402: 123550.

36Cui YC, Gao JF*, Zhang D, Zhao YF, Wang YW. Rapid start-up of partial nitrification process using benzethonium chloride—a novel nitrite oxidation inhibitor. Bioresource Technology 2020, 315: 123860.

(37Dai HH, Gao JF*, Wang SJ, Li DC, Wang ZQ. The key active degrader, metabolic pathway and microbial ecology of triclosan biodegradation in an anoxic/oxic system. Bioresource Technology 2020, 317: 124014.

(38Dai H-H, Gao J-F*, Wang Z-Q, Zhao Y-F, Zhang D. Behavior of nitrogen, phosphorus and antibiotic resistance genes under polyvinyl chloride microplastics pressures in an aerobic granular sludge system. Journal of Cleaner Production 2020, 256: 120402.

(39Duan W-J, Gao J-F*, Zhang W-Z, Wang Y-W, Liu J. Elimination of antibiotic resistance genes in waste activated sludge by persulfate treatment during the process of sludge dewatering. Bioresource Technology 2020, 311: 123509.

(40Gao J-F*, Duan W-J, Zhang W-Z, Wu Z-L. Effects of persulfate treatment on antibiotic resistance genes abundance and the bacterial community in secondary effluent. Chemical Engineering Journal 2020, 382: 121860.

(41Jia J-X, Gao J-F*, Dai H-H, Zhang W-Z, Zhang D, Wang Z-Q. DNA-based stable isotope probing identifies triclosan degraders in nitrification systems under different surfactants. Bioresource Technology 2020, 302: 122815.

(42Li DC, Gao JF*, Dai HH, Wang ZQ, Duan WJ. Long-term responses of antibiotic resistance genes under high concentration of enrofloxacin, sulfadiazine and triclosan in aerobic granular sludge system. Bioresource Technology 2020, 312: 123567.

(43Li D-C, Gao J-F*, Zhang S-J, Gao Y-Q, Sun L-X. Enhanced granulation process, a more effective way of aerobic granular sludge cultivation in pilot-scale application comparing to normal granulation process: From the perspective of microbial insights. Science of the Total Environment 2020, 707: 136106.

(44Li D-C, Gao J-F*, Zhang S-J, Gao Y-Q, Sun L-X. Emergence and spread patterns of antibiotic resistance genes during two different aerobic granular sludge cultivation processes. Environment International 2020, 137: 105540.

(45Wang Y, Gao J*, Duan W, Zhang W, Zhao Y, Liu J. Inactivation of sulfonamide antibiotic resistant bacteria and control of intracellular antibiotic resistance transmission risk by sulfide-modified nanoscale zero-valent iron. Journal of Hazardous Materials 2020, 400: 123226.

(46Wang Z, Gao J*, Li D, Dai H, Zhao Y. Co-occurrence of microplastics and triclosan inhibited nitrification function and enriched antibiotic resistance genes in nitrifying sludge. Journal of Hazardous Materials 2020, 399: 123049.

(47Zhang D, Gao J*, Zhang L, Zhang W, Jia J, Dai H, et al. Responses of nitrification performance, triclosan resistome and diversity of microbes to continuous triclosan stress in activated sludge system. Journal of Environmental Sciences 2020, 92: 211-223.

(48Zhang W, Gao J*, Duan W, Zhang D, Jia J, Wang Y. Sulfidated nanoscale zero-valent iron is an efficient material for the removal and regrowth inhibition of antibiotic resistance genes. Environmental Pollution 2020, 263(Pt B): 114508.

(49Fan X-Y, Gao J-F*, Pan K-L, Li D-C, Dai H-H, Li X. Temporal heterogeneity and temperature response of active ammonia-oxidizing microorganisms in winter in full-scale wastewater treatment plants. Chemical Engineering Journal 2019, 360(2019): 1542-1552.

(50Fan X-Y, Gao J-F*, Pan K-L, Li D-C, Dai H-H, Li X. More obvious air pollution impacts on variations in bacteria than fungi and their co-occurrences with ammonia-oxidizing microorganisms in PM2.5. Environmental Pollution 2019, 251: 668-680.

(51Gao J-F*, Liu X-H, Fan X-Y, Dai H-H. Effects of triclosan on performance, microbial community and antibiotic resistance genes during partial denitrification in a sequencing moving bed biolm reactor. Bioresource Technology 2019, 281: 326-334.

(52Gao J-F*, Wu Z-L, Duan W-J, Zhang W-Z. Simultaneous adsorption and degradation of triclosan by Ginkgo biloba L. stabilized Fe/Co bimetallic nanoparticles. Science of the Total Environment 2019, 662: 978-989.

(53Pan K-L, Gao J-F*, Li D-C, Fan X-Y. The dominance of non-halophilic archaea in autotrophic ammonia oxidation of activated sludge under salt stress: A DNA-based stable isotope probing study. Bioresource Technology 2019, 291: 121914.

(54Fan X-Y, Gao J-F*, Pan K-L, Li D-C, Dai H-H, Li X. Functional genera, potential pathogens and predicted antibiotic resistance genes in 16 full-scale wastewater treatment plants treating different types of wastewater. Bioresource Technology 2018, 268: 97-106.

(55Fan XY, Gao JF*, Pan KL, Li DC, Zhang LF, Wang SJ. Shifts in bacterial community composition and abundance of nitrifiers during aerobic granulation in two nitrifying sequencing batch reactors. Bioresource Technology 2018, 251: 99-107.

(56Pan K-L, Gao J-F*, Fan X-Y, Li D-C, Dai H-H. The more important role of archaea than bacteria in nitrification of wastewater treatment plants in cold season despite their numerical relationships. Water Research 2018, 145: 552-561.

(57Pan K-L, Gao J-F*, Li H-Y, Fan X-Y, Li D-C, Jiang H. Ammonia-oxidizing bacteria dominate ammonia oxidation in a full-scale wastewater treatment plant revealed by DNA-based stable isotope probing. Bioresource Technology 2018, 256: 152-159.

(58Fan XY, Gao JF*, Pan KL, Li DC, Dai HH. Temporal dynamics of bacterial communities and predicted nitrogen metabolism genes in a full-scale wastewater treatment plant. RSC Advances 2017, 7(89): 56317-56327.

(59Gao J-F*, Fan X-Y, Li H-Y, Pan K-L. Airborne bacterial communities of PM2.5 in Beijing-Tianjin-Hebei megalopolis, China as revealed by Illumina MiSeq sequencing: A case study. Aerosol and Air Quality Research 2017, 17(3): 788–798.

(60Gao J-F*, Pan K-L, Li H-Y, Fan X-Y, Sun L-X, Zhang S-J, et al. Application of GelGreen™ in cesium chloride density gradients for DNA-stable isotope probing experiments. Plos One 2017, 12(1): e0169554.

(61Gao J-F*, Fan X-Y, Luo X, Pan K-L. Insight into the short-term effect of titanium dioxide nanoparticles on active ammonia oxidizing microorganisms in a full-scale wastewater treatment plant: a DNA-stable isotope probing study. RSC Advances 2016, 6(77): 73421-73431.

(62Gao J-F*, Fan X-Y, Pan K-L, Li H-Y, Sun L-X. Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter. Scientific Reports 2016, 6: 38785.

(63Gao J-F*, Fan X-Y, Wu G-X, Li T, Pan K-L. Changes of abundance and diversity of ammoniaoxidizing archaea (AOA) and bacteria (AOB) in three nitrifying bioreactors with different ammonia concentrations. Desalination and Water Treatment 2016, 57(45): 21463-21475.

(64Gao J-F*, Li H-Y, Pan K-L, Fan X-Y, Si C-Y. Green synthesis of iron nanoparticles using Garcinia mangostana l. pericarp extract and their application for degradation of anthraquinone dye. Fresenius Environmental Bulletin 2016, 25(7): 2343-2355.

(65Gao J-F*, Li H-Y, Pan K-L, Si C-Y. Green synthesis of nanoscale zero-valent iron using a grape seed extract as a stabilizing agent and the application for quick decolorization of azo and anthraquinone dyes. RSC Advances 2016, 6: 22526 - 22537.

(66Gao J-F*, Si C-Y, Li H-Y. Role of functional groups on protonated de-oiled soybean involved in triclosan biosorption from aqueous solution. RSC Advances 2016, 6(71): 67319-67330.

(67Gao J-F*, Si C-Y, He Y. Application of soybean residue (okara) as a low-cost adsorbent for reactive dye removal from aqueous solution. Desalination and Water Treatment 2015, 53(8): 2266-2277.

(68Gao J-F*, Luo X, Wu G-X, Li T, Peng Y-Z. Abundance and diversity based on amoA genes of ammonia-oxidizing archaea and bacteria in ten wastewater treatment systems. Appl Microbiol Biotechnol 2014, 98(7): 3339-3354.

(69Gao J-F*, Luo X, Wu G-X, Li T, Peng Y-Z. Quantitative analyses of the composition and abundance of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in eight full-scale biological wastewater treatment plants. Bioresource Technology 2013, 138(0): 285-296.

(70He Y, Gao J-F*, Feng F-Q, Liu C, Peng Y-Z, Wang S-Y. The comparative study on the rapid decolorization of azo, anthraquinone and triphenylmethane dyes by zero-valent iron. Chemical Engineering Journal 2012, 179: 8-18.

71Gao J-F*, Wang J-H, Wu X-L, Zhang Q, Peng Y-Z. Protonated spent mushroom substrate as a potential low-cost biosorbent for the removal of Reactive Red 15 from aqueous solutions. Fresenius Environmental Bulletin 2011, 20(1): 51-62.

(72Gao J-F*, Wang J-H, Yang C, Wang S-Y, Peng Y-Z. Binary biosorption of Acid Red 14 and Reactive Red 15 onto acid treated okara: Simultaneous spectrophotometric determination of two dyes using partial least squares regression. Chemical Engineering Journal 2011, 171(3): 967-975.

(73Gao J-F*, Wang J-H, Yuan Q, Yang C, Wang S-Y, Peng Y-Z. Utilization of agricultural waste chestnut shell for the removal of Reactive Brilliant Red K-2G from aqueous solution. Desalination and Water Treatment 2011, 36(1-3): 141-151.

(74Gao J-F*, Zhang Q, Wang J-H, Wu X-L, Wang S-Y, Peng Y-Z. Contributions of functional groups and extracellular polymeric substances on the biosorption of dyes by aerobic granules. Bioresource Technology 2011, 102(2): 805-813.

(75Gao J-F*, Zhang Q, Su K, Chen R-N, Peng Y-Z. Biosorption of Acid Yellow 17 from aqueous solution by non-living aerobic granular sludge. Journal of Hazardous Materials 2010, 174(1-3): 215-225.

(76Gao J-F*, Zhang Q, Su K, Wang J-H. Competitive biosorption of Yellow 2G and Reactive Brilliant Red K-2G onto inactive aerobic granules: Simultaneous determination of two dyes by first-order derivative spectrophotometry and isotherm studies. Bioresource Technology 2010, 101(15): 5793-5801.

(77Gao J-F*, Chen R-N, Su K, Zhang Q, Peng Y-Z. Inactive aerobic granules as biosorbent for the removal of anionic azo dye Acid Red 14 from aqueous solution: isotherms, kinetics and thermodynamics. Fresenius Environmental Bulletin 2009, 18(9A): 1681-1691.

(78Peng Y-Z*, Gao J-F, Wang S-Y, Sui M-H. Use of pH as fuzzy control parameter for nitrification under different alkalinity in SBR process. Water Science and Technology 2003, 47(11): 77-84.

(79Peng Y-Z*, Gao J-F, Wang S-Y, Sui M-H. Use pH and ORP as fuzzy control parameters of denitrification in SBR process. Water Science and Technology 2002, 46(4-5): 131-137.

中文论文

(1)高景峰*, 单家林, 崔影超, 赵轶凡, 王雨薇. 新型硝化抑制剂对乙酰氨基酚快速启动短程硝化的研究. 安全与环境学报 2022, 22(04): 2091-2100.

(2)张树军, 李定昌, 高景峰*, 高永青, 张帅. SBR反应器中不同粒径成熟好氧颗粒污泥的分形表征. 安全与环境学报. 2018;18(02):691-6.

(3)李定昌,王琦,高景峰*,高永青,张帅. 不同粒径成熟好氧颗粒污泥EPS的三维荧光光谱特性. 中国给水排水. 2018;34(7):26-31.

(4)高景峰*, 张丽芳, 张树军, 高永青, 王时杰, 樊晓燕, et al. 两次污泥颗粒化过程中微生物群落的动态变化. 环境科学. 2018;39(5):2265-73.

5樊晓燕,高景峰*. 空气微生物群落样品采集、解析方法及研究进展. 安全与环境学报. 2018;18(1):357-63.

(6)高景峰*, 王时杰, 樊晓燕, 潘凯玲, 张丽芳, 张树军, et al. 同步脱氮除磷好氧颗粒污泥培养过程微生物群落变化. 环境科学. 2017,计入2018工作量;38(11):4696-705.

(7)高景峰*, 孙丽欣, 樊晓燕, 潘凯玲, 李定昌. 罗红霉素短期冲击对活性污泥中氨氧化微生物丰度和多样性的影响. 环境科学. 2017;38(7):2961-71.

(8)樊晓燕, 高景峰*, 王时杰, 张丽芳, 张树军, 高永青, et al. 同步脱氮除磷系统中两种颜色好氧颗粒污泥的微生物群落特征. 环境科学研究. 2017;30(8):1287-94.

(9)高景峰*, 李婷, 樊晓燕, 潘凯玲, 吴桂霞, 张树军. CANON系统中四种脱氮相关菌丰度和多样性. 应用基础与工程科学学报. 2016;24(5):863-77.

(10高景峰*,司春英. 响应曲面法优化油茶饼对活性红15的生物吸附特征及机理. 环境科学研究. 2015;28(11):1764-73.

(11高景峰*,李婷,张树军,樊晓燕,潘凯玲,马谦,袁亚林. 两个CANON污水处理系统中氨氧化古菌的丰度和多样性研究. 环境科学. 2015;36(8):2939-46.

(12高景峰*, 吴桂霞, 苏凯, 张倩, 王金惠, 罗欣. 处理垃圾渗滤液好氧颗粒污泥的培养及其脱氮特性. 安全与环境学报. 2015;15(05):244-50.

(13司春英,高景峰*,张志红. 改性黄豆粕对废水中Cu2+的生物吸附特性. 安全与环境学报. 2013;13(5):44-51.

(14高景峰*, 张倩, 王金惠, 苏凯, 彭永臻. 颗粒活性炭对SBR反应器中好氧颗粒污泥培养的影响研究. 应用基础与工程科学学报. 2012;20(03):345-54.

(15高景峰*, 苏凯, 张倩, 陈冉妮, 彭永臻. 底物种类和浓度对好氧颗粒污泥丝状菌膨胀的影响. 威尼斯wns.8885556学报. 2011;37(07):1027-32.

(16高景峰*, 苏凯, 陈冉妮, 张倩, 彭永臻. 不同储存方法对好氧颗粒污泥恢复的影响. 应用基础与工程科学学报. 2011;19(03):408-15.

(17高景峰*, 苏凯, 陈冉妮, 张倩. 好氧颗粒污泥在酸性红14废水中的形成及降解酸性红14机理的初步研究. 安全与环境学报. 2011;11(01):25-9.

(18高景峰*, 张倩, 苏凯, 王金惠, 彭永臻, 王淑莹. 好氧颗粒污泥对水溶液中酸性淡黄2G的生物吸附. 环境化学. 2010;29(06):1127-34.

(19高景峰*, 苏凯, 张倩, 陈冉妮, 王金惠, 彭永臻. 不同碳源培养的成熟好氧颗粒污泥的分形表征. 环境科学. 2010;31(08):1871-6.

(20高景峰*, 苏凯, 陈冉妮, 张倩, 王金惠, 彭永臻. 连续进水对好氧颗粒污泥稳定维持的影响. 环境科学学报. 2010;30(07):1377-83.

(21高景峰*, 陈冉妮, 苏凯, 张倩, 彭永臻. 好氧颗粒污泥同时脱氮除磷实时控制的研究. 中国环境科学. 2010;30(02):180-5.

(22高景峰*, 陈冉妮, 苏凯, 张倩, 彭永臻. 同步脱氮除磷好氧颗粒污泥形成与反应机制的研究. 环境科学. 2010;31(04):1021-9.

(23高景峰*, 陈冉妮, 苏凯, 张倩. 好氧颗粒污泥对酸性红B的生物吸附模型研究. 安全与环境学报. 2010;10(01):25-30.

(24高景峰*, 陈冉妮, 苏凯, 张倩. 好氧颗粒污泥生物吸附酸性红B的试验研究. 安全与环境学报. 2009;9(06):50-4.

(25陈冉妮, 高景峰*, 郭建秋, 苏凯, 张倩. 好氧颗粒污泥同步脱氮除磷的常温启动和低温维持. 环境科学. 2009;30(10):2995-3001.

(26高景峰*, 郭建秋, 陈冉妮, 苏凯, 彭永臻. SBR反应器排水高度与直径比对污泥好氧颗粒化的影响. 中国环境科学. 2008(06):512-6.

(27高景峰*, 郭建秋, 陈冉妮, 苏凯, 彭永臻. 三维荧光光谱结合化学分析评价胞外多聚物的提取方法. 环境化学. 2008(05):662-8.

(28高景峰*, 郭建秋, 毕环宇, 陈冉妮, 苏凯. 间歇式除磷好氧颗粒污泥反应器的快速启动. 环境工程. 2008(01):15-8+2.

(29高景峰*, 周建强, 彭永臻. 处理实际生活污水短程硝化好氧颗粒污泥的快速培养. 环境科学学报. 2007(10):1604-11.

(30高景峰*. 沉淀时间及生物膜对实际生活污水形成好氧硝化颗粒污泥的影响. 环境科学. 2007(06):1245-51.

(31高景峰*, 彭永臻, 王淑莹. 有机碳源对低碳氮比生活污水好氧脱氮的影响. 安全与环境学报. 2005(06):11-5.

(32高景峰*, 彭永臻, 王淑莹. 污水生物处理模糊控制的研发现状. 环境科学与技术. 2004(01):90-3+115-6.

(33高景峰*, 彭永臻, 王淑莹. 人工神经网络和专家系统在污水生物处理系统中的应用. 环境污染与防治. 2004(01):31-2+8.

(34高景峰*, 彭永臻, 王淑莹. 以pH作为SBR法硝化过程模糊控制参数的基础研究. 应用与环境生物学报. 2003(05):549-53.

(35高景峰*, 彭永臻, 王淑莹. SBR法反硝化过程模糊控制器的设计和碳源投加方式的选择. 环境科学学报. 2003(06):733-7.

(36高景峰*, 彭永臻, 王淑莹. SBR法反硝化模糊控制参数pH和ORP的变化规律. 环境科学. 2002(01):39-44.

(37高景峰*, 彭永臻, 王淑莹. DO和ORP与SBR法硝化反硝化的相关关系. 哈尔滨建筑大学学报. 2002(01):61-5+93.

(38高景峰*, 彭永臻, 王淑莹. 温度对亚硝酸型硝化/反硝化的影响. 高技术通讯. 2002;12(12):88-93.

(39彭永臻, 高景峰, 王淑莹. 模糊控制在污水生物处理系统中的应用. 环境科学学报. 2001(S1):143-8.

(40高景峰, 彭永臻, 王淑莹, 曾薇, 隋铭皓. 以DO、ORP、pH控制SBR法的脱氮过程. 中国给水排水. 2001(04):6-11.

(41高景峰, 彭永臻, 王淑莹, 曾薇. 不同碳源及投量对SBR法反硝化速率的影响. 给水排水. 2001(05):55-8+0.

(42高景峰, 彭永臻, 王淑莹. SBR法去除有机物、硝化和反硝化过程中pH变化规律. 环境工程. 2001(05):21-4+3.

专利

(1)高景峰,戴慧卉,王知其,赵轶凡,崔影超,李定昌, 一种基于DNA稳定同位素核酸探针技术同时鉴定短程反硝化菌和三氯生降解菌的方法. ZL 202011503038.2. 2022年8月9日.

(2)高景峰,邬志龙,段婉君,张文治, 一种银杏叶合成改性型铁钴双金属颗粒的方法及应用. ZL 2019 1 0127052.8. 2022年3月29日.

(3)高景峰,贾京鑫,王知其,张达,张文治, 一种表面活性剂强化硝化系统中三氯生生物降解的方法. ZL 201901157766.X. 2022年1月28日.

(4)高景峰,邬志龙,段婉君,张文治, 一种利用松树皮绿色改性纳米鉄锡双金属颗粒的方法. ZL 201910127323.X 2022年1月28日.

(5)高景峰,张达,贾京鑫,崔影超,张文治,王知其, 基于对氯间二甲苯酚快速启动与维持城市污水短程硝化的装置与方法. ZL 201911150566.1. 2022年1月28日.

(6)高景峰,崔影超,张达,赵轶凡,王雨薇, 利用苄索氯铵快速启动城市污水常温短程硝化的方法. ZL 201911358193.7. 2021年12月3日.

(7)高景峰,张达,张文治,贾京鑫,王知其,崔影超, 基于三氯生快速启动与稳定维持城市污水短程硝化的装置与方法. ZL 201911150550.0. 2021年11月26日.

(8)高景峰,潘凯玲,李洪禹,一种三苯甲烷染料结晶紫废水快速还原降解的方法. ZL201710228089.0. 2020年6月16日.

(9)高景峰,潘凯玲,李洪禹,一种提高绿色合成纳米零价铁降解结晶紫染料废水能力的方法其应用. ZL201710228103.7. 2020年4月7日.

(10高景峰,潘凯玲,李洪禹,一种提高绿色合成纳米零价铁降解活性艳蓝染料废水效率的方法及其应用. ZL201710228101.8. 2020年4月7日.

(11高景峰,潘凯玲,李洪禹,一种提高绿色合成纳米零价铁降解碱性棕G染料废水能力的方法其应用. ZL201710228086.7. 2020年4月8日.

(12高景峰,潘凯玲,李洪禹,一种碱性染料碱性棕G废水快速还原降解的方法. ZL201710228105.6. 2020年4月21日.

(13高景峰,司春英,李洪禹,樊晓燕,潘凯玲,一种利用质子化豆饼去除废水中三氯生的方法. ZL201510497605.0. 2017.

(14高景峰,潘凯玲,樊晓燕,司春英,李洪禹,李婷,孙丽欣,一种GelGreen染料在氯化铯密度梯度混合液中对DNA染色的方法. ZL201510205804.X. 2017年8月22日.

(15高景峰,司春英,郑晓桥,一种榛子壳制成的染料吸附剂ZL201310661300.X. 2016年3月2日.

(16高景峰,司春英,杨辰,一种核桃壳生物质炭吸附剂用于去除废水中的活性艳红K-2G染料的方法ZL201410093243.4. 2016年1月6日.

(17高景峰,司春英,杨辰,一种核桃壳生物质炭吸附剂用于去除废水中的活性艳蓝KN-R染料的方法ZL201410093945.2. 2016年1月20日.

(18高景峰,司春英,李洪禹,一种利用油茶饼去除废水中染料的方法. ZL201410404428.2. 2016年5月18日.

(19高景峰,司春英,一种改性废弃茶叶渣吸附剂、制备方法及应用ZL201310320360.5. 2016年1月20日.

(20高景峰,李洪禹,司春英,一种利用葡萄籽绿色合成纳米零价铁的方法及其应用ZL201410436735.9. 2016年8月24日.

(21高景峰,李洪禹,司春英,一种利用山竹果皮绿色合成水溶性纳米铁的方法及其应用.ZL201410112823.3. 2016年5月25日.

(22司春英,高景峰,张志红,一种改性黄豆粕吸附剂、制备方法及应用.ZL201310272276.0. 2015年04月22日.

(23司春英,高景峰,王金惠,板栗壳作为吸附剂的应用. ZL201310320357.3. 2015年8月5日.

(24高景峰,司春英,杨辰,一种核桃壳生物质炭吸附剂去除废水中亚甲基蓝染料的方法. ZL201410092983.6. 2015年9月2日.

(25高景峰,司春英,杨辰,一种利用葵花籽壳生物质炭吸附剂去除废水中孔雀石绿的方法. ZL201310662704.0. 2015年8月26日.

(26高景峰,司春英,杨辰,一种利用葵花籽壳生物质炭吸附剂、制备方法及去除水中亚甲基蓝的方法ZL201310686422.4. 2015年11月11日.

(27高景峰,司春英,杨辰,一种核桃壳生物质炭吸附剂用于去除废水中的罗丹明B染料的方法.ZL201410093252.3. 2015年10月28日.

(28高景峰,司春英,王金惠,一种改性废弃蘑菇培养基吸附、制备方法及应用. ZL201310320284.8. 2015年7月1日.

(29高景峰,司春英,一种改性荞麦皮吸附剂、制备方法及应用.ZL201310320281.4. 2015年12月9日.

(30高景峰,陈冉妮,彭永臻,苏凯,张倩,一种处理生活污水亚硝化好氧颗粒污泥的培养方法.ZL200910082203.9. 2011年5月4日.

(31高景峰,陈冉妮,彭永臻,苏凯,张倩,生活污水常低温同时脱氮除磷好氧颗粒污泥的培养方法ZL200910082222.1. 2011年5月11日.


版权所有 © 威尼斯wns.8885556威尼斯wns.8885556

COPYRIGHT © Faculty of Environment and Life,Beijing University of Technology